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The network approach is a methed whereby physicochemical
systems are replaced by electrical netwoarks, which are simulated
by using a digital computer program such as PSPICE. The network
method solves problems of great mathematical complexity in a
versatile and efficient way. This method has been applied to a sys-
tem involving coupled chemical reactions and diffusion (Brusselator
system) as a prototype of an oscillating reaction system. © 1995
Academic Press, Inc.

1. INTRODUCTION

In this paper we apply an alternative method to study dissipa-
tive nonlinear systems, such as systems involving coupled
chemical reactions and diffusion, based on a network model
of the diffusion-reaction equations. The technique derives from
the theories of Peusner (1} and Oster ef al. 2], known as
network thermodynamics, which permit coupled flows and driv-
ing forees (o be analyzed in terms of electiical networks. Net-
work thermodynamics takes advantage of the similarities in the
mathematical structure underlying different phenomena with
balance and constitutive equations of the same type. Such equa-
tions fix the topology (the connection modes of the circuit
branches) and the geometry (the circuit elements: resistors,
capacitors, sources, etc.) of the network model, thus allowing us
to establish a formal similitude between the diftusion-reaction
equations and electric networks.

In the network approach, the spatial variable in the diffusion-
reaction equations is discretized as in linite-diflerence schemes
but the time variable remains continuous. This altows the math-
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ematical model to be described by a network model, trans-
forming the partial differential equations involved in the diffu-
sion reaction problems into a set of coupled linear ordinary
differential equations (equations of the network). When the
network model of a system has been developed, an electrical
network whose topology and geometry are identicat with those
of the system is obtained, and therefore the behavior of the
network model is identical with that of the system. Highly
developed methods of circuit analysis may then be employed
to obtain the dynamic behavior of such systems directly from
the graph without having to deal explicitly with the differential
equations. We have found that the electric simulation program
PSPICE [3] is very useful for this purpose. Although this pro-
gram is designed as an electronic circuit simulator, it can be
useful as a high-level user-oriented simulation language, spe-
cially suited to the digital solution of diffusion reaction
problems.

Although reaction-diffusion systems have been studied with
this approach, the study was done considering single chemical
reaclions [4] or very specific problems with special features,
such as electroanalytical electrode processes [5] and sorption
onto mineral surfaces [6]. In this paper, a logical extension of
the previous work in the area of PSPICE simulation of reaction-
diffusion network models is carried out with a relatively com-
plex system of coupled reactions as the trimolecular modet
involving the following sequence of reactions under open-sys-
tem conditions [7, 8]:
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B+X 5 y+D
(1)
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2. NETWORK MODELING OF DIFFUSION-REACTION
PROCESSES

The one-dimensional diffusion-reaction process is described

by the partial differential equation '

de(z, NIt = D{d%e(z, nfaz} + flco), 2)

where the diffusion coefficient, D, is assumed to be constant,

¢z, t) is the concentration of the chemical species at positicn

z and time ¢, and the function, f{c), represents a simultaneous
chemical reaction.

The standard approach to solving Eq. (2) is to generate a
system of finite difference equations. In the network approach,
the space is the only discretized parameter, and Eq. (2) can be
approximated as

defddt = (DIAT?)(cimy — 2¢; + €a0) + fle)s 3)
where the variable z has been partitioned into N discrete ele-
ments of width Az. ¢; is the concentration in the compartment
i(l <i<N)

Equation (3) can be approximated as

dC,‘J{dt == (J,'_| - J,)IAZ +f‘(C;), (4)

where J; is the flux leaving the compartment ¢

Ji = (DIAZY(c; — ¢ (9

311

according to Fick’s first law. However, Eq. (4) can be rewritten
in the form

Jioy =i = J + Jg, =0, (6)
where
S = Az (dc/dr) 0
and
Joi = Azf(c)). (3)

Equations (5) and (7) in an electrical variable, @, correspond
to the circuit equations for a resistor (f = A®/R) and a capacitor
{I = C(ad®/dr)}, respectively. Thus, we can model J; and J,; as
the current through a linear resistor of resistance R = Az/D
and as the current across a capacitor of capacitance equal to
the thickness of the compartment, C = Az, respectively.

In the case of chemical reactions of order higher than the
first, the function f({c;}) depends on the concentrations of all
reaction species. Equation (8) is then a relation in which a
“‘current,”” Jg;, appears as a function of several ‘‘voltages”
{the concentrations of the reaction species, {c,}), which can be
modeled by a multivariable voltage dependent current source
(GJg) of output Az f({c;}). The network simulation is accom-
plished through a circuit simulation program such as PSPICE,
and this program has a special format to write such nonlinear
elements in a straightforward way [3].

On the other hand, Eq. (6) is Kirchhoff’s current law at the
node {, and we can incorporate both diffusive and reaction
effects by connecting the three elements: a series resistance R,
a shunt capacitance C, and a shunt dependent source Glg as
in Fig. 1a. Since the diffusion coefficient is considered constant,
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Network model for a diffusion-reaction process: (a) in a compartment, (b) in the entire physical region.
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FIG. 2. (a) Network model for the Brusselator. {b) Another way to represent the global network model for the Brusselator.
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TABLE I

Transient Analysis of Brusselator as in Fig. Za; Accuracy and
Computer Times

X Y CPU times on

N {(arbitrary units} PC 486/66 (s)
60 36.65 210 140
100 19.78 3.89 284
120 19.16 4.00 353
140 17.66 4,35 434
160 16.80 4.55 491
200 16.54 4.64 650
240 16.54 4.64 1110

Note. Parameters used in the simulation (domain II) are: D, = 0.197, A* =
14, D, = 105 X 1073, X* = 14, Dy = 0.66 X 107, ¥* = 5.5, B = 77 (from
Herschkowitz-Kaufman and Nicolis, 1972),

at least within each compartment, the linear resistor can be
split into two equal parts, R/2, between which the capacitor
and current source are placed. So, ¢; in each compartment is
the concentration in the center of such a compartment.

For network modeling purposes, any number, N, of circuit
elements, like that in Fig. 1a, must be connected in series to form
the network model for the entire physical region undergoing a
non-stationary diffusion-reaction process. Figure 1b shows the
entire ladder network model.
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3. APPLICATION TO AN AUTOCATALYTIC MODEL

We apply this method to study an autocatalytic model of an
open system adapted from the trimolecular model scheme (1)
in the case where the concentrations of the substances B, D,
and E are maintained space- and time-independent throughout
the system [9]. The inverse reaction rates are neglected and all
forward kinetic constants are set equal to one. The scheme is
then described by the rate equations:

aX/ot = DXz + A+ XY — (B+ DX 9
aY/ar = Dy(3%Y/4z) + BX — XY (10)
dA/r = DA(8?AJAY) — A (1

with 0 < 7z < [,
We study the solutions of Egs. (9)-(1.1) under the following
boundary conditions:

X(0) = X(I) = X* (12)
Y(0) = Y(I) = Y* (13)
A(0) = A() = A*, (14)

Equations (9)—(11) take the form of the general diffusion-
reaction problem (Eq. (2)), where the chemical kinetic terms,

Fch, are now

FIG. 3. Time evolution of the concentrations of X {a) and ¥ (b) at the middle point for domain II. (¢) Plats of ¥ against X.
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FIG. 4. Spatial distribution of X to certain characteristic stages of temporal evolution: + = 3, 3.9, 4, 4.5, 5.6, 6, 6.2, and 7. The numerical values of the
various parameters are the same as in Table I.

fdch=A+XY— B+ DX
fr{ch = BX - XY
fllehy = —A.

(15)
(16)
(17)

So, the network model of these equations will be the ladder

network model of Fig. 1, with GJ(X) = Az-fr({e}), GJe(Y) =
Az f({ch, and GJg(A) = Az-f,({c}) for the circuit branches
representing the species X, ¥, and A, respectively.

The next step is 1o include initial and boundary conditions
in the network model. Equation (12)—(14) mean that the concen-
tration of substances X, ¥, and A maintain their initial values
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in z = 0 and z = 1. For network modeling purpoeses, these
conditions can be represented by suitable constant voltage
sources of values X*, Y*, and A*, as shown forz =0 and z =
1, in Fig. 2a. Moreover, any initial conditions can also be
incorporated into the network model by means of the initial
voltage of the capacitors of Fig. 2a, which shows the global
network model for the Brusselator with above-mentioned condi-
tions.

Since GJu(X) = —(GJ(A) + GJ(Y) + Az X) we can
improve the graphical representation of the dynamical behavior
of the system connecting the A, X, and Y circuit branches as
shown in Fig. 2b and where the term Az X has been modeled
as the current through a linear conductance of value G = Az.
Now, the network model of Fig. 2b represents graphically the
interconnection among the flows J,, Jx, and J,. In each point
of the system, the terms of production (chemical reaction) and
transport (diffusion) affecting the temporal vanation of concen-
tration of the species 4, X, and ¥ have been made explicit graphi-
cally.

The implementation of the network model of Fig. 2 into an
electric network simulation program, such as PSPICE, allows
us to investigate the behaviour of the system for different situa-
tions. PSPICE is a member of the SPICE family of nonlinear
circuit simulators which can calculate the behavior of analog
circuits with speed and accuracy. PSPICE is a general purpose
simulation program for nonlinear dc, ac, and transient analyses
which can be run on a personal computer. A combination of
trapezoidal (the implicit Crank—Nicolson scheme) and Gear’s
algorithm with a truncation-error timestep control is employed
in the PSPICE program. This integration technique is stiffly
stable.

PSPICE must be supplied with a netlist description of the
circuit to be simulated and also with the set of analyses to be
performed. This information is collected into an input file to
be read by the simulator, which then calculates the *“voltages™
and ‘“‘currents’’ of the analog components and nodes. The re-
sults are displayed as meaningful graphs and tables for fur-
ther analysis.

The format for entering a description of the network into the
program PSPICE is quite simple, and a complete explanation
is given in the user’s guide [3]. The actual PSPICE circuit file
for a network model such as Fig. 2a, with the appropriate
numerical values for the parameters of the system, is given in
Appendix A for reference. All the calculations were carried
out on a PC-486/66.

4. NUMERICAL RESULTS AND DISCUSSION

By means of the network model of Fig. 2, a quantitative
simulation of the trimolecular model can be obtained by using
the computer program PSPICE. Various parameters can be
varied singly or in combination to explore their effect on model
behavior. The result is the ability to perform a series of simula-
tions in one computer run. Without attempting to present a
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complete catalogue of results for every choice of imput parame-
ter, we will illustrate the versability and generality of the proce-
dure by presenting some typical results for the above-mentioned
autocatalytic system. The results obtained are consistent with
those of other authors [8, 9], despite the use of different
methods.

Using the network thermodynamic method, we showed in a
previous paper [10] that, in the limit where A is distributed
uniformly in the system (D, — o), the scheme (1} presents a
unique uniform steady state solution,

Xy =A, Yy = BIA, (18)
which is the continuation of the close-to-equilibrium behavior.
For certain sets of values of the system parameters, A, B, D,
and D,, the solution of (18) became unstable. Herschokowitz-
Kaufman and Nicolis [9] have carried out an infinitesimal stabil-
ity analysis of system (Eqs. (9)-(11)) to analyze the possible
existence of additional steady-state solutions of the dissipative
structure type. Their results show that, for fixed values of A,
D,, and D,, the domain of instability may be divided into two
regions: ong with B small and D, much larger than D, {(domain
1y, and another with B large and D, close to, or smaller, than
D, (domain II).

In the first place, we have carried out a transient analysis of
the network model, for values of B and D, belonging to the
unstable domain II. The accuracy of the network simulation
goes up rapidly as the number of compartments (V) is increased.
Therefore, we need to know the number of compartments
needed to obtain reasonable numerical accuracy. In order to
check out this effect, a multicompartment study has been carried
out on the space 0 = z = I = 1|, taking compartments of
thickness Az = 1/N. Computed values of X and Y at middle
point (point N/2) and at ¢ = 5 for various numbers of compart-
ments (N} have been listed in Table I. Beyond 140 compart-
ments, the values of X and Y are not suffering very significant
changes, while the cost in computer times increases with N;
for that reason, in this paper a 140-compartment network model
has been used.

The results of the network simulation for N = 140 and values
of the system parameters belonging to unstable domains II and
I are present in Figs. 3-7. Figure 3 shows the time variation
of the concentrations of X and Y at the middle point and their
phase diagram for domain I1. Also, the spatial distribution of
X to certain characteristic stages of temporal evolution, t = 3,
39,4,45,56,6,6.2, and 7, is shown in Fig. 4. These times
were chosen according to the results obtained for concentrations
of X in Fig. 3a. So, we start at + = 3 with @ minimum value
of X at the middle point. After a time interval At == 4.6, the
whole phenomenon is repeated and the system passes through
exactly the same stages. These results imply that the system
exhibits a ““wavelike solution™ with a sharp periodicity [9].

Figure 5 illustrates the concentration of X profiles at different
times in the situation in which B is relatively smaller and D,
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FIG. 6. Transient buildup of X tolal flux (Jy) and its rate reaction (Jgeac) for the domain 1.

much larger than D, (domain I). As can be seen from this figure,
the system evolves toward a new steady state characterized bya
space organization of X and ¥ (a localized dissipative structure).

Finally, to illustrate other possibilities that can be easily
obtained from the network approach, Figs. 6 and 7 show the
transient buildup of X total flux (J,) and its rate reaction (o)
for domains [ and 11, respectively. The fluxes resulting show
that for the first domain of instability the system finally attains
a new steady state. However, in the second domain of instability
the fluxes have an oscillating behavior in accordance with those

observed in the time variation of X concentration at every point
of the physical region of interest. So, in this case, the system
evolves toward a steady state corresponding to a dissipative
structure which is both space and time dependent.

5. CONCLUSION

The proposed network model together with an electric circuit
simulation program such as PSPICE allows us to predict easily
the behavior of the Brusselator. Both spatial and temporal distri-
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FIG. 7. Transient buildup of X total flux (Jy) and its rate reaction (Jreac) for the domain 11

butions of species X and Y, as well as their fluxes, are obtained
without mathematical complexities, providing a useful tool in
the analysis of these kinds of systems where oscillatory phe-
nomena arise, whatever the initial and boundary conditions.
The network method is simple because only a few branch
elements are necessary and they are connected in such a way
that Kirchhoff’s laws of currents and voltages are fulfilled,
When the network simulation using the electric simulation rou-
tine PSPICE is made, it is not necessary to extract or manipulate

the equations which describe the network, because this program
does that automatically. Therefore it is not necessary to consider
either numerical or computational aspects. Moreover, this
method is not limited by the complexity of the processes oc-
curring in the system and allows one to solve complex mathe-
matical problems by an efficient graphical method with a mod-
erate cost in computer time.

One particular advantage of the method used here is that the
investigator need not be familiar with computer programming
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and need only learn a few rules for providing information to
PSPICE, which uses a simple and concise language to represent
circuit diagrams. This is generally not the case when classical
methods are used.

APPENDIX

PSPICE Program for the Network Model in Figure 2a

BRUSSELATOR

*4¥x Values of the parameters: A = 14; X = 14; Y = BiA; N = [140; Ar = 11140
2% Domain I Dy = I97E-3; Dy = 105E-3; Dy = 525E-3; B = 26

**xx* Domain lI: D, = 197E-3; Dy =1.05E-3; Dy =66E-4; B = 77

*&x% Subcircuit for the trimolecular scheme in a compartment (Domain ) ****
SUBCKT TRIMOL 1234567

RY! I 8 6.762E-1

RY2 8 2 6.762E-1

RXI 3 9 3401

RX2 9 4 3.40]

RA! 5 10 1.8IF-2

RA2 I0 6 I 8IE-2

CY 8 0 71E-3 IC=1.86

CX 907I1E3I1C=14

CA 100 7.1E-3 IC=14

Gla(A) 0 10 10 0 -7.1E-3

Gla(y) 11 8 POLY(2) 90 80 0 I1.846E-1 0 0 0 D 0 -7.1E-3

GIG(X) 7 9 POLY(3) 90801000 -IR7E-1 071E30000000¢ 7.1E-3
ENDS TRIMOL

*¥3¥ Network Simudation for N = 140 +**

X1 2000 2001 3000 3001 4000 4001 | TRIMOL

X2 2001 2002 3001 3002 4001 4002 1| TRIMOL

X3 2002 2003 3002 3003 4002 4003 1 TRIMOL

X4 2003 2004 3003 3004 4003 4004 [ TRIMOL

X138 2137 2138 3137 3138 4137 4138 1 TRIMOL
X139 2138 2139 3138 3139 4138 4139 1 TRIMOL
X140 2132 2140 3139 3140 4138 4140 1 TRIMOL
*** Boundary conditions, r = () *+*%

VY 2000 & 136

VA 4000 0 14

VX204

¥k X total flux and rare reaction of X #++%

Vix 2 3600 0

Vireac 1 0 0

ek Boundary conditions, v = ] e+

VY2 2140 G 1.86

VX4 3140 0 14

VAG 4140 0 1«

¥+ Transient analysis ***

TRAN I 6 UIC

PRINT TRAN V(2000) V(2001) ... V(2I39) V(2140)
PRINT TRAN V(3000) V(3001} ... V(3139) V{3140)
PRINT TRAN V(4000) V{(4001} .... V(4139) V{4140)
PRINT TRAN I(VJx) I{VIreac)

PROBE

END
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